Micromechanics.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micromechanics of Macroelectronics

The advent of flat-panel displays has opened the era of macroelectronics. Enthusiasm is gathering to develop macroelectronics as a platform for many technologies, ranging from paper-like displays to thin-film solar cells, technologies that aim to address the essential societal needs for easily accessible information, renewable energy, and sustainable environment. The widespread use of these lar...

متن کامل

Modelling Cochlear Micromechanics

The cochlea is an organ of the hearing system, whose basic function is to map sounds of different frequencies onto corresponding characteristic positions along the basilar membrane (BM). Sound-induced BM vibration is transformed into deflection of stereocilia on the hair cells, which then encodes the sound as neural signals for perception. Most cochlear models used to describe the BM vibration ...

متن کامل

Lattice models in micromechanics

This review presents the potential that lattice ~or spring network! models hold for micromechanics applications. The models have their origin in the atomistic representations of matter on one hand, and in the truss-type systems in engineering on the other. The paper evolves by first giving a rather detailed presentation of one-dimensional and planar lattice models for classical continua. This i...

متن کامل

Micromechanics of Rough Interfaces

The mechanical behavior of rough interfaces is modeled from a micromechanical viewpoint. A kinematically driven mechanistic approach is adopted which explicitly considers the interaction of asperities on the fracture surface. The mating asperities are assumed to behave in accordance with contact mechanics postulates of non-conforming bodies. The roughness of the fracture surface is represented ...

متن کامل

Micromechanics of Sea Urchin Spines

The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine's unique porous structure, based on micro-computed tomography (microCT) and incorpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kobunshi

سال: 1987

ISSN: 0454-1138,2185-9825

DOI: 10.1295/kobunshi.36.726